TMTpro-18plex: The Expanded and Complete Set of TMTpro Reagents for Sample Multiplexing

Jiaming Li¹, Zhenying Cai^{2,3}, Ryan D. Bomgarden⁴, Ian Pike⁵, Karsten Kuhn⁵, John C. Rogers⁴, Thomas M. Roberts^{2,3}, Steven P. Gygi^{1*}, and Joao A. Paulo^{1*}

Table of contents:

Name	Brief caption
Figure S1	MS1 ion peaks for a TMTpro-18plex reagent-labeled precursor scanned with different MS1 resolutions in profile mode.
Figure S2	Evaluation of figures of merit in TMTpro16 and TMTpro18 experiments.
Figure S3	RPS6 protein abundance and gene ontology enrichment.
Figure S4	Raw Westernblot images.
Table S1	Protein quantifications in the TMTpro18 experiment. (.xlsx provided separately)
Table S2	Protein quantifications in the TMTpro16 experiment. (.xlsx provided separately)
Table S3	Phosphorylation quantifications in TMTpro18 and TMTpro16 experiments. (.xlsx provided separately)
Table S4	Isotopic impurities of TMTpro-134C and TMTpro-135N. (.xlsx provided separately)

¹ Department of Cell Biology, Harvard Medical School, Boston, MA, USA

² Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA

³ Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA

⁴ Thermo Fisher Scientific, Rockford, IL, USA

⁵ Proteome Sciences, London, UK

 $^{^*}Corresponding\ author:\ steven_gygi@hms.harvard.edu; joao_paulo@hms.harvard.edu$

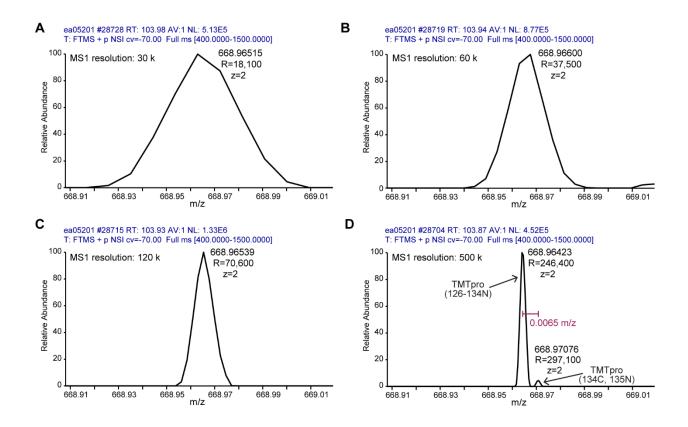


Figure S1. MS1 ion peaks for a TMTpro-18plex reagent-labeled precursor scanned with different MS1 resolutions in profile mode. The spectra originated from the 18-plex experiment in Figure 2A and consisted of 18 samples each labeled with a TMTpro-18plex reagent. The TMTpro-134C and TMTpro-135N reagent-labeled precursor (sequence: ALVILAK) has a +12 mDa monoisotopic mass shift (compared to the TMTpro16-labeled precursor) due to a difference in the number of ¹⁵N and ¹³C isotopes (there are two TMTpro reagents attached to this peptide, so +12 mDa mass difference in total). The precursor is doubly charged. Commonly used MS1 resolution settings (30,000, 60,000, and 120,000) are unable to resolve the 0.006 m/z mass difference (A-C). The MS1 resolution setting of 500,000 can detect the mass difference (D). The 0.0065 m/z difference in (D) is the measured m/z difference for the doubly-labeled and doubly-charged peptide. The theoretical m/z difference is 0.0063 m/z.

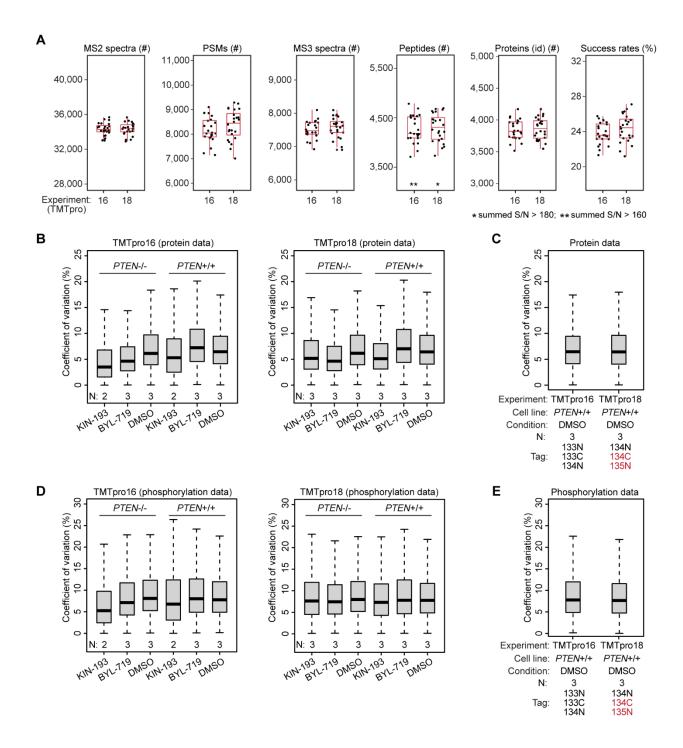
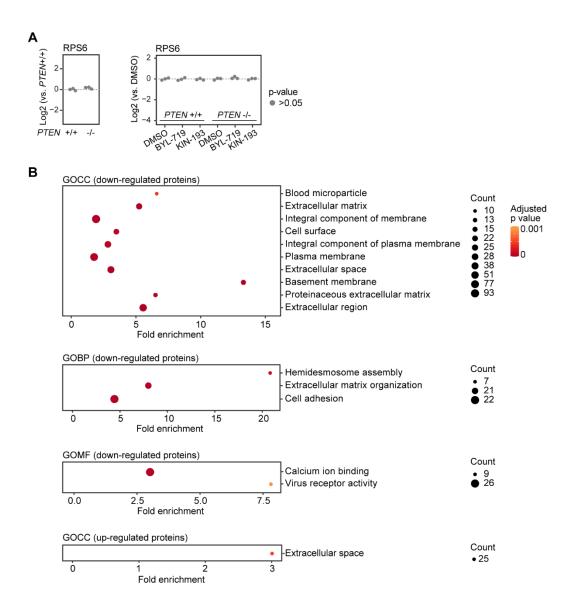



Figure S2. Evaluation of figures of merit in TMTpro16 and TMTpro18 experiments. (A)

The TMTpro16 and TMTpro18 experiments showed comparable numbers of MS2 spectra, peptide-spectrum matches (PSMs), MS3 spectra, peptides, identified proteins, and success rates in each fraction. Each dot represents one of twenty-four fractions. (**B**) Coefficient of variation

(CV) distributions for the protein data in both experiments. A median CV of ~6% was achieved in both experiments. (**C**) Protein CV distributions focusing on the DMSO-treated control MCF10A (*PTEN*+/+) cell line, which include the samples labeled with the TMTpro-134C and TMTpro-135N reagents in the TMTpro18 experiment. (**D**) CV distributions for the phosphorylation data in both experiments. A median CV of ~7.5% was achieved in both experiments. (**E**) Phosphorylation CV distributions focusing on the DMSO-treated control MCF10A (*PTEN*+/+) cell line, which include the samples labeled with the TMTpro-134C and TMTpro-135N reagents in the TMTpro18 experiment.

Figure S3. RPS6 protein abundance and gene ontology enrichment. (A) The RPS6 protein abundance was equivalent between control MCF10A and MCF10A *PTEN-/-* cell lines. The expression level of RPS6 remained unchanged after BYL-719 or KIN-193 treatments in both cell lines. **(B)** Gene ontology enrichment analysis of dysregulated proteins in MCF10A *PTEN-/-* cells (versus control MCF10A cells).

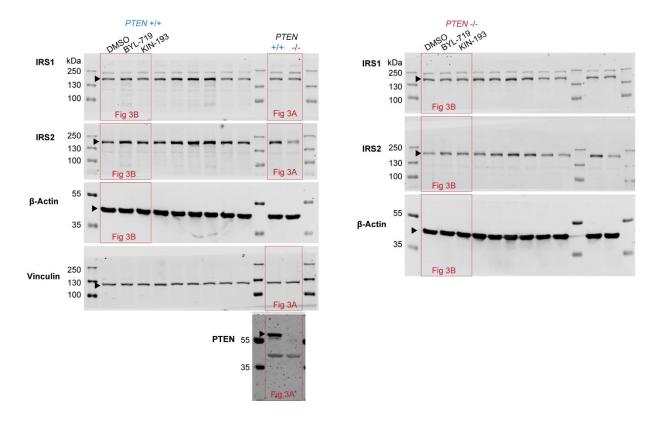


Figure S4. Raw Western blotting images.